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ABSTRACT

This report deals with the thermal design of rotary type regenera-
tive heat exchangers for aircraft ps turbine power plants. Hausen's
regenerator theory is developed in a form directly applicable to the
rotary machine, and deviations from some of the underlying assumptions
are ezaviinod. A numerical method to calculate the performance of un-
balanced regenerators is included, but this calculation is not required
for application of the theory. Pressure drop and heat transfer data for
flame trap and wire screen mtrices are assembled, The effect of the
regenerator performance on the thermodynamic cycle in discussed. Finally.
a sample calculation is presented.
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NOWECLATUU

Note 1: The symbol F is used for the unit Fahrenheit degree (temperature
difference). One Rankine degree is equal to one Fahrenheit degree;
hence, the symbol F is also used for a degree on the absolute tem-
perature scale. The symbol *F is used for the temperature, that
is, the place on the Fahrenheit temperature scale.

Note 2: The prime (1), the double prime ("), and the triple prime ('") are
used with symbols C, m, q, and S to denote that the quantity refers
to a unit of length, a unit of area, or a unit of volume, respectively.

Symbol Quantity Unit

A facial area or cross sectional area of flow 2

in duct ft

C heat capacity B/F

C, s C2 ,C3  constants -

Cp specific heat B/lb F

D wire diameter in., ft

D equivalent diameter (see Eq. 3-12) fte
f friction factor (see Eq. 3-16) -

f reduced temperature of the solid at inlet or

outlet plane (see Eq. 2-34) -

G mass velocity lbysec ft 2

g acceleration constant ft/sec2

g a function -

h coefficient of heat transfer B/hr ft2 F

,... 4  enthalpy B/lb

K fraction of circle subtended by ducts -

K kernel functions (see Eq. 2-39 and -41) -

k therml conductivity B/hr ft F

L matrix length ft

1 drum length ft

m rate of flow lb/hr

m index -

N number of divisions in numerical calculation -

N speed of rotation sec-1

NNu Nusselt number, hDe/k -

WADC TR 55-13 xii



SyblQuntity Unit
Prandtl numbers 1 c/

SReynolds number, /k

Nst Stanton number, a- h/Gc-

n exponent
n pitch in.- ft-I

p pressure lb/ft 2

heat added during the thermodynamic cycle B/lb

q rate of heat transfer B/hr

R gas constant ft/F

r radius ft

r pressure ratio -

S area of heat transfer surface ft2

T absolute temperature *R

t temperature of solid *F

U utilization factor (see Eq. 2-20)

u fluid velocity in x-direction ft/hr

V volume, relative volume ft 3

v matrix velocity in y-direction ft/hr

W work of cycle B/lb

x distance from entrance in direction of
fluid motion ft

Y,Y* duct width (see Fig. 2-2) ft

y*y distance solid particle moves in stream

(see Fig. 2-2) ft

a ratio of free flow area to facial area -

(3 void fraction -

specific weight lb/ft3

A increment of -

e dun=y variable of integration -

reduced time (see Eq. 2-17) -

compressor efficiency -
kRec recuperator effectiveness

TReg regenerator effectiveness
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Symbol Quantit,,y Unit 1
turbine efficiency --

@ tenperature of gas 'F

K.. ratio of specific heats -

A reduced length (see Eq. 2-18) -

lb/lw ft,p dynamic viscosity lb/sec ft

reduced distance (see Eq. 2-10) -

21 reduced period -

density lb/ft3

t'tir hr

conduction parameter (see Eq. 2-77) -

0 variable angle -

LA speed of rotation radians/sec

Subscripts
A state point at air-side regenerator outlet in thermodynamic

cycle

a air side of regenerator

app apparent

B state point at gas-side regenerator outlet in thermodynamic
cycle

b bulk mean

g gas side of regenerator

i inside

m mean

o entrance; outside

opt optimum

r reduced; radial

s solid
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Chapter 1: INTRODUCTION

1-1 Purpose

The idea of regeneration to increase the thermal efficiency of a

thermodynamic cycle is all known. Because some advantages of space

and weight requirements have appeared in favor of the rotating regenera-

tive heat exchanger, zany investigators during the past decade have

examined the possibilities of its application to gas turbine power

plants of aircraft. The purpose of this report is to bring the present

theoretical and experimental knowledge to a form which may be useful to

designers interested in that application.

1-2 Scope

The report deals mainly with thermal design of the regenerator.

The influence of the regenerator performance on the over-all thermo-

dynamic cycle is considered. Heat transfer and pressure drop data are

presented. Nbchanical design, pover plant arrangement, and the still

incompletely solved problem of satisfactorily sealing the fluid streams

are mentioned only insofar as they may have a bearing on the thermal de-

sign or performance calculations.

1-3 Application of the Thermodynaic Regenerator

In the next few sections some characteristics of thermodynamic re-

generation are briefly reviewed by outlining the operation of a gas tur-

bine cycle with and without regeneration a"d by comparing the performances

of the two cases.

1-3.1 Thermodynamic Cycle of the Simple Gas Turbine Power Plant

The ideal thermodynamic cycle of a simple, open, gas turbine

power plant is shown diagramatically in the tenperature-entropy plane

of Fig. 1-1. The air at the atmospheric conditicn pl,Tl is compressed

isentropically to state p2 ,T2 . Then heat is added at constant pressure

by burning fuel in the air until the gas attains the temperature T3 .
The air is then expanded isentrpicafly in a turbine to atmoapheric pres-

sure P4 = pI"
Y

Manuscript released by the author in Jun 1955 fbr eas a WaDO
Technieal Report.
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1-3.2 Thermodynamic Gas Turbine Cycle with Regeneration

A heat exchanger is now introduced to transfer some heat from

the exhaust gases (Point 4) to the high-pressure air flowing from the com-

pressor to the combustion chamber. This reduces the amount of fuel needed

to bring the air to Point 3. A schematic flow diagram of a regenerative

gas turbine power plant is shown in Fig. 1-2. The numbers and letters re-

fer to the correspondingly labeled points in Fig. 1-1.

As can be seen in Fig. 1-1, the amount of heat transferred in

the exchanger depends upon the difference betwen the temperatures T 4

and T2 . In the case of high pressure ratios (p 2 /pl), it can happen that

T4 -rT 2 so that a heat exchanger would decrease the thermal efficiency.

For this reason regeneration mast not be introduced arbitrarily.

Further, with the addition of the heat exchanger to the power

plant some inherent disadvantages must be considered. The size and weight

of the plant increase, the pressure losses increase, and some compressed

air leaks to the exhaust without passing through the turbine. The heat

exchanger mast do more than just compensate for these deleterious effects

if its addition is to be worth vhile.

1-3.3 Evaluation of the Heat Exchanger Effectiveness in the Thermo-

dynamic Cycle

The ideal amount of thermal energy that could be transferred

per unit time from the exhaust gases to the relatively cold air is

macp a(T 4 - T2 ), subscript a referring to the cold air side of the heat

exchanger, m being the rate of flow in lb/hr, and c an average spe-P
cific heat in B/lb F. For practical reasons, the actual rate of heat

transfer is macpia (TA - T2 ), where TA is the actual temperature of

the cold air leaving the heat exchanger (see Fig. 1-1 and -2). The ratio

of the actual to the ideal rate is called the heat exchanger effective-

ness. Accordingly,

TA T2

amCTR 55-13 3
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Schmitt (Ref. 26) calculated the influence of regeneration on i
the thermal efficiency of a gas turbine power plant operating as follows:

Air inlet temperature, 1 - - 58*F or TI = 4020R

Maximum cycle temperature, t 3 = 1832"F or T3 = 2292"R

Heat exchanger effectiveness, ex = 0.7

Compressor efficiency,1  c 0.85

Turbine efficiency I t = 0.82

The results of the calculations are shown graphically in Fig.

1-3. Obviously, regeneration is most practical at low pressure ratios,

as has already been mentioned. If the heat exchanger effectiveness would

be increased, the maximum thermal efficiency of the cycle would be in-

creased and translated to a lower value of the pressure ratio, as is indi-

cated by the trend of the curves in Fig. 1-3.

One way to increase the heat exchanger effectiveness is to in-

crease its size. However, there is an optimum value of Iex beyond

which a gain in cycle efficiency cannot be made without excessive increases

of size and weight of the power plant. This optimum depends upon the heat

exchanger.

1-4 Some Conparisons of Recuperative and Regenerative Heat Exchangers

In this report the conventional heat exchanger of the shell-and-tube

type is called a "recuperator" and the rotating or Ljungstroem type is

called a "regenerator". The term, wregenerator", is used here apart from

its meaning in the science of thermodynamics. Where ambiguity nay arise

the longer expression, "regenerative heat exchanger", is employed.

1-4.1 Limitation of the Recuperator

It has been shown that the smallest recuperators to meet a spe-

cified performance are obtained by using large numbers of tubes having

small diameter (see, for example, Ref. 28). One of the main reasons is

that in fine passages the flow becomes laminar, in which case the required

IThe compressor and turbine efficiencies are defined in Chapter 4.

WADC TR 55-13 5
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core size diminishes much more rapidly with the Reynolds number than in

the case of turbulent flow. A practical limit of the tube size is set

by constructional difficulties in separating the two fluids inside the

recuperator core and in providing headers or tube sheets; also, operational

difficulties arise on account of fouling and cleaning.

1-4.2 Regenerator Core or Matrix

In the regenerator core the constructional difficulties can be

avoided. Well defined passages are unnecessary, for the two fluids are

alloved to occupy the same space at different times. The heat is exchanged

primarily by virtue of the matrix capacity for heat storage rather than

by its nature to conduct heat. Hence, the size of the passages may be con-

siderably reduced, and a compact and relatively light weight core, or matrix,

can be obtained. Since seals within the matrix are unnecessary, any hetero-

geneously packed, permeable solid can be enployed. Thus, the matrix may

be constructed from layers of wire gauze or screens, odd shapes of braided

wires and ceramic fibers, as well as various types and shapes of crimped

ribbons and tubular packings. There is some evidence (Ref. 15) indicating

that no appreciable amounts of soot build up inside of the passages of

these matrices, and so the above mentioned operational difficulties may

be avoided.

1-5 Regenerator Types

The matrix of the regenerator is exposed to the hot fluid for some

time during which its temperature rises. Then it is exposed to the cold

fluid which takes away the amount of heat that had been stored during the

heating period. This process repeats itself in a cyclic may. In appli-

cations of the steel and liquefaction industries, the regenerators are

built with two matrices which are alternately heated and cooled by switch-

ing the fluids with valves. The important theories of regenerators have

been developed with those arrangements in view.

It seems that the method most suitable for producing this cyclic

change in aircraft power plants is to rotate the matrix so that any part

of the matrix is carried alternately through the hot and cold fluid streams.
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This method is similar to that of the rotative type air preheaters used

in modern steam power plants. In this report one of the main regenerator

theories is recast so that it is directly aplicable to the rotating re-

generator; also, other theories are discussed from that standpoint.

Rotating regenerators ray be classified according to whether the

fluids flow axially or radially.

1-5.1 Axial or Disk Regenerators

The matrix of the axial regenerator shown in Fig. 1-4 is built

in the shape of a disk. The disk is mounted coaxially in a round cylinder

divided into two ducts. The two fluids flow in opposite sense, the hot

fluid flowing in one duct and the cold fluid in the other. The matrix ro-

tates about its axis and would usually be turned by a positive external

drive requiring a very small amount of power. Thus, any point in the

matrix passes alternately through the hot and cold streams, carrying the

heat from the one to the other.

1-5.2 Radial or Drum Regenerators

Figure 1-5 represents the drum type regenerator. The matrix is

built in a cylindrical form through which the fluids flow radially. This

drum is mounted coaxially with two round ducts. The inner duct and the

annular space are divided in the axial direction into two parts, one for

the cold fluid and the other for the hot fluid. As in the previous case,

the fluids are in counterflow through the matrix.

1-6 Leakage

One of the practical problems arising in the mechanical design of a

regenerator for application to the gas turbine powr plant is the prevention

of leakage, particularly from the high pressure air to the low pressure

gas. The amounts of leakage play an important role in the thermal design

and thermodynamic performance. Four types of leakage may possibly occur.
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FIG.I-5 DRUM TYPE REGENERATOR
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1-6.1 Air-to-Gas Leakage through Clearance Spaces

Leakage from the air side to the gas Bide occurs through gaps

between the moving matrix and the stationary walls separating the two

fluids. This type of leakage affects the power plant efficiency adverse-

ly, because the compressor must handle air at a higher rate than the tur-

bine. The leakage can be considerably reduced by the inside seals shom

in Fig. 1-4 and -5.

1-6.2 Air-to-Air or Gas-to-Gas Leakage

Some air or gas my bypass the matrix through the clearance

space between the rotating matrix and the duct walls, because a pressure

drop exists across the matrix. Hence, parts of either fluid my not pass

through the matrix, and the effectiveness of the regenerator diminishes..

This type of leakage is reduced by means of the outside seals indicated

in Fig. 1-4 and -5.

1-6.3 Air-to-Gas Leakage through Matrix

In matrices other than the tubular, or flame trap type, the

air could leak through the matrix to the exhaust side. This is prevented

by dividing the matrix into sectoral compartments and using seals wide

enough to cover at least one conpartment at a time.

1-6.4 Carry-Over Leakage

Finally, the so-called "carry-over" ieakage or "let down" oc-

curs. The fluid trapped in the individual copartments of the matrix are

carried from one stream to the other by virtue of the matrix rotation.

Because the air has a high density, the carry-over is greater from the air

to the gas side than from the gas to the air side of the regenerator. The

carry-over is unavoidable; however, it can be kept below a reasonable

limit with slow speeds of rotation.

1-7 Other Design Considerations

In addition to the leakage hich is a problem unique to the regenera-

tive heat exchanger, the pressure drop, common to all types of heat ex-
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changers, mast be considered. The effects of the pressure drops on both

the air and gas sides is to decrease the expansion ratio of the turbine,

thus reducing the thermal efficiency of the power plant. To be worth

while, the regenerator mst of course augment the net output considerably

more than would be needed just to balance the decrease due to pressure

drop.

The effect of size and weight should be considered from the viewpoint

of the aircraft performance and purpose. As already mentioned, because

of its small passages and finely divided structure, the regenerator appears

to have an advantage of being lighter than a recuperator meeting the same

performance requirements.
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Chapter 2: THEORY OF THE ROTATING REGENERATIVE HEAT EXCHANGER

2-1 Assumptions

The assumptions of Hausen's (Ref. 10 and 12) theory are discussed in

the next sections. Then his basic differential equations are developed

from the standpoint of tieir application to the rotating regenerator.

2-1.1 Homogeneity

It is assumed that both the solid and the fluids are continuous,

homogeneous media. This assumption is essential for the formulation of

the differential equations. In practice the matrix may be considered

homogeneous if the material is so finely divided that the sizes of the

voids and individual solid elements are very small compared to the, over-

all volume of the matrix.

2-1.2 Steady-State Operation

It is assured that the matrix has been rotating long enough so

that the temperature of any point in the atrix solid repeats itself peri-

odically. Thus, any transients of starting and stopping are not considered.

At each point in space through which the matrix passes the tem-

perature is independent of the time. This means that as an element in

the matrix reaches a particular position in space, it attains a certain

temperature affixed to that position.

2-1.3 Uniform Temperatures of the Fluids at Entrances to the Matrix

The temperature of the fluids at the entrances to the matrix is

assumed uniform. Of course, at the exits their temperatures vary from

point to point as will be determined by the theory.

2-1.4 Convection without Conduction

Heat is transferred only by convection at the interface of the

matrix and the fluids. An infinitesimal elemental subdivision of the

matrix material interchanges heat only with the contacting fluid and not
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LI
with neighboring subdivisions; within each infinitesimal subdivision of the
solid the conductivity is infinite in the direction normal to the direction
of fluid flow and zero in the direction parallel to the fluid flow. In

other words, no heat is conducted through any finite part of the solid,

while the capacity of this part for heat storage is not impaired. Since

the matrix is usually rode of thin sheets or wires of heat resisting ma-

terials which have relatively low conductivity, this assumption is justi-

fiable. Some effects of finite conductivity are discussed in later sections.

As for the fluids, heat is convected by them and is conducted

within them only in regions on the interface of each subdivision. This

assumption is justified by the low conductivity of the fluids.

2-1.5 Constant Coefficients of Heat Transfer

The coefficient of heat transfer h is assumed constant in either

stream. This means that influences of transients in the boundary layers

and of variations in the fluid properties are neglected. This assumption

may be justified by the facts that the transients are of relatively brief

duration and that the thermal properties of the fluids change relatively

little with temperature. In practice, the fluid properties are evaluated

at certain mean temperatures (see Section 5-6).

2-1.6 Constant Density

The thermal expansion or contraction of the fluid during heating

or cooling changes the velocity of the fluid as it passes through the

matrix. The influence of these variations are omitted from the theory in

order to simplify the mthetics. Calculations by Saunders and Smoleniec

(Ref. 25) indicate that this assumption is justifiable.

2-2 Derivation of the Differential Equations

Suppose that the matrix has been stretched out so that its motion is

rectilinear. Then the matrix is said to be flat or plane. It is evident

that the findings regarding the flat matrix are directly applicable to the

disk type regenerator; also, it is shown in Appendix A that after minor

modification the results are applicable to the drum type regenerator.
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With reference to Fig. 2-1, the matrix has the length L in the main

direction of fluid flow. The velocity of the matrix is v, the direction

being normal to that of the fluid stream. The fluid flows with a mass

velocity of m" pounds per hour per square foot of facial or frontal area.

A heat balance is made on an element of volume in space. The dimensions

of the element in the plane of motion are bx by 6 y; its depth, normal

to the plane of motion, is one foot.

Under steady-state conditions (see Section 2-1.2), thermal energy is

carried in the x-direction by the fluid and in the y-direction by the solid;

also some heat is carried over in the y-direction by the fluid trapped in

the interstices of the matrix element.

2-2.1 Thermal Energy Conveyed by the Fluid

The energy transported per unit time by the fluid into the ele-

ment of space is

q- =, (by • 1) • cp • e (2-1)

where 9 = Q(x,y) is the fluid teuperature; c • Q is the enthalpy of
the fluid referred to zero enthalpy at O*F.

2-2.2 Thermal Energy Conveyed by the Solid Material

Similarly as in Section 2-2.1, the thermal energy transported

per unit time by the solid material into the element of space is

= v •( l1) • espp • c ", P t (2-2)

where subscript s refers to the solid, t = t(xy) is the solid tempera-

ture, and c • t is the enthalpy of the material referred to zero en-
P's

thalpy at 0 F. Subscript app means that the apparent density should be

employed. Subscript 1 indicates that only one part of the heat conveyed

in the y-direction is considered.
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2-2.3 Thermal Energy in the Carry-Over

A second part of the heat conveyed in the y-direction is the therm-

al energy of the fluid carried over in unit time by the matrix:

y2 = v(6x •1) app " " (2-3)

2-2.4 Balance of the Transported Thermal Energy

Applying the First Law of Thermodynamics to the elemental volume

of space and observing that no heat is stored,

5x + 2 y = o (2-4)bx by

Substituting for qx' qy,l, and y,2 from Eq. 2-1, -2, and -3 into Eq. 2-4

and sinplifying,

m"c - + Cv__ vc =O (2-5)
P ax by Py

where ? is the actual fluid density, 0 is the void fraction (the ratio

of the volume of voids to the volume of matrix), and

c"m ~sapp Cps (2-6)

2-2.5 Heat Exchange in the Elemental Volume of Space

As the relatively hot matrix "flows" into the space element it

loses heat to the flowing fluid by convection. The rate of change of

the enthalpy of the matrix material is equal to the rate of heat trans-

ferred by convection in the same space element. Accordingly,

a(v .Sx • Cmt) by= hSM (t-Q) x 5y (2-7)

The minus sign appears because t decreases in the positive y-direction.

The same equation would be obtained if the matrix were considered to be

cold and gaining heat from the fluid. Sinplifying,
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bt hS- (G t) (2-8)

Eliminating at/87y from Eq. 2-5 and -8 and placing ma = ue

'+ 8 " =M (t _ 0) (2-9)

It may be noted that u is the effective axial velocity of the fluid, that

is, the distance a fluid particle moves per unit time in the x-direction

through the mtrix interstices. Equations 2-8 and -9 are the basic dif-

ferential equations governing the terperatures of the solid and fluids in

the flat regenerator. In the next section they are brought to a more con-

venient form.

2-2.6 The Differential Equations in Dimensionless Space Coordinates

Introducing

h SO
F= h x (2-10)

m p

and

hSm (Z 1 (2-11)

C ' V u

and substituting for x and y in term of F and , Eq. 2-8 and -9

become

-t (2-12)

t 0 (2-13)

where t and 0 are now regarded as functions of E and

Equations 2-12 and -13 describe the heat exchange in one of the re-

generator streams. Therefore, the problem of the heat exchange in the

regenerator is solved using two sets of these equations. In both streams
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x is positive in the direction of the flow and y is positive in the di-

rection of the matrix motion.

2-3 Boundary Conditions

Only counterflow regenerators will be considered. The two streams

will be called the "cold air" and the "hot gas", and symbols denoting

quantities on corresponding sides of the regenerator will be distinguished

by subscripts a and g, respectively. Thus, a plane normal to the flow

direction of the cold air is at a distance xa from the cold-air entrance.

The same plane would be at a distance x from the hot-gas entrance, so
g

that

In order to formulate the boundary conditions the "actual" regenerator

will be replaced by an "ideal" regenerator. It will be convenient to con-

sider the matrix of fine tubular construction; however, substantially the

same analysis would apply to gauze type matrices.

2-3.1 Difficulty of Formulating Boundary Conditions for the Actual

Regenerator

As the solid particles in a plane normal to the direction of the

matrix motion enter one of the fluid streams, a point at x, 0 is not

immediately affected because the fluid does not reach that point until

the tire xl/u has elapsed; meanwhile the point moves to y1 =v • (xl/u ).

Also, at the farther side of the fluid stream, at x = 0, there is a dis-

tance ii the y-direction, namely, v • (L/u), such that fluid particles

entering cannot reach all parts of the passages before they are blocked

or sealed. Suzmarizing, in the actual regenerator the duration of time
a point in the matrix is affected by a given stream depends upon its dis-

tance x from the entrance of the fluid. A point of the matrix at

x = 0 spends the full heating or cooling period in the fluid stream

whereas a point at x = L stays a shorter time. These variable exposure

IHausen (Ref. 10) also' considered pairallel-flow regenerators. He
showed that their maximum effectiveness is limited to a value of 0.5.
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times lead to mathematical boundary conditions which are difficult to

handle. Therefore, an ideal regenerator is defined which closely approxi-

mates the actual regenerator for all practical purposes and simplifies

the mathematics.

2-3.2 Ideal Regenerator

An ideal flat regenerator is shown diagrammatically in Fig. 2-2.

The walls dividing the two fluid streams are imagined to be permeable,

in such a way that they allow the matrix to pass through them but keep

the fluids out. Further, the walls of each channel are slanted at the

angle tan -I (v/u) from the main direction of the fluid flow. Hence, the

fluid particles move parallel to the walls. As a consequence of this

arrangement, any point in the matrix enters the stream at the moment the

fluid arrives; the point is immediately affected by the first particle

of fluid entering at the near side of the stream. At the far side, the

fluid particles leave the matrix, without being replaced by other fluid

particles. Thus, in the ideal regenerator, carry-over from one stream

to the other is avoided.

With reference to Fig. 2-2,

V

7* = V (2-15)

and the distance between the permeable trolls is

y* = y - v x (2-16)
U

Hence, the distances y are measured from an axis which is oblique to

the direction of flow, and the distance Y* is uniform, so that all

points of the matrix in the ideal regenerator have the same length of

effective path in a given stream.

It may be noted that upon eliminating y from Eq. 2-11 and -15,

hSm  (2-17)

WADC TR 55-13 19



Yg GAS-

Ig'

WAD TRWALL 2



and that the differential equations in dimensionless space coordinates,

namely, Eq. 2-12 and -13, are unaltered.

2-3.3 Dimensionless Lengths

To formulate the boundary conditions of the ideal regenerator,

the extreme values of . and will be needed. The value of E for

x = L will be denoted by A and will be called the reduced length. Thus,

A = L (2-18)
p

The value of v for y = Y* will be denoted by 1 and will be called

the reduced period.1  Thus,

= hSm  * (2-19)

It is of sore interest that the ratio

T,, a .-L (2-20) !

which is called the utilization factor, is independent of h and S"'.

It should be noted that values of h. and I on the air side

of the regenerator are generally not equal to corresponding values on the

gas side. Since x is measured from the plane at which the fluid enters

the matrix and since 9/A = x/L, the quantities ea and g corre-
g

sponding to the sane plane are related by the equation,

g = x (2-21),qg ,'a

1The reason for this bizarre name for a distance is that the theory
was originally developed for non-rotary regenerators which operate in a
quasi-stationary way, and the term Speriod" as well as the symbol IT
are retained to avoid any confusion in case the reader consults the
literature.
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I
Further,

" .-- (2-22)

and

It *
= -1 • (2-23)

Ta Y* ha~a

Kiminating the ratio hg/ha from Eq. 2-22 and -23,

Aa Ita so c *
g pg g

For many practical purposes it may be assuned that cpIa = C pg* Moreover,

in the application of the theory to an aircraft gas turbine power plant,

if the leakage from one stream to the other is very small cozpared with

the total rate of flow it may also be assumed that m" Ya = m Y , by con-

tinuity. Under these circumstances the ratio in the parentheses of Eq.

2-24 takes the value 1, and

or U = U (2-25)
Aa Itaa g

This is a useful relationship in dealing with regenerators which have un-

equal reduced lengths and reduced periods, that is, so-called unbalanced

regenerators.

2-3.4 Boundary Conditions of the Ideal Regenerator

In accordance with the assunption in Section 2-1.3 that the tem-

peratures of the fluids at the entrance planes are uniform,

Qa(Os ja 0 O (2-26)

and

0g(o 1) F G, o (2-27)
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.1

where both Qajo and 9.o are constants.

Since nothing happens to the ideal matrix as it passes through

the permeable wall, the temperature at a point in the solid leaving one

stream is equal to the temperature at that point entering the second

stream. Accordingly, considering that t = t (x ,y)and ta =ta Xay:),
g g ga

and focusing our attention on a plane of the matrix which leaves the cold

air and on another which enters the hot gas, we may write

tg(X ,0) ta(L- (2-28)

Introducing the reduced lengths and reduced periods and considering now

that t = t( g) and ta = t a' ea) ' - my transform Eq. 2-28

to

t( )0) =t (A ~ ~ ii~)(2-29)

Similarly, focusing our attention on planes which leave the hot gas and

enter the cold air,

t( aO) = tg g 1 - a, g (2-30)

The problem of the ideal regenerator is now nathematically

V formulated. A solution is required to satisfy two sets of the linear

partial differential Eq. 2-12 and -13, one set for each fluid, and to

satisfy the boundary conditions, namely, Eq. 2-26, -27, -29, and -30.

2-3.5 Comparison of the Ideal and Actual Regenerators

The difference lies in the slanted, permeable mall, which is

impossible to construct in the actual regenerator. This wall has two

features:

First, it has the ability to separate the fluid from the solid,

allowing the solid to pass through it. The effect, as already mentioned,

is to eliminate the carry-over losses discussed in Section l-6.4. In
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practice this type of leakage may be kept low by enploying low speeds of

rotation, say, 30 to 40 revolutions per minute. This places a limit on

the matrix velocity v.

Second, the permeable wall is slanted at the angle tan 1I (v/u)

with respect to the direction of fluid flow, while the wall of the actual

regenerator is straight. As (v/u) -o 0, the shape of the ideal regenera-

tor approache, the shape of the actual one. Since practical values of

v/u would usually be quite small, the approximation is good. It may be

noted that the sare approximation would be made by omitting the second

term in the parentheses of Eq. 2-11, for this term arose by the admittance

of a carry-over of thermal energy from one elemental volume of space to

another (Section 2-2.3).1

2-3.6 Single-Blow Problem

An allied problem, which is of a sirpler nature than the one

treated above, deals with the "single-blow". Its inportance here lies

in the fact that its solution may be erployed to solve the regenerator

problem. Also, it has been enployed in several experimental studies to

determine the coefficients of heat transfer. See, for exanple, Ref. 12,

25, and 26.

In the single-blow, a stationary matrix having an arbitrary

initial terperature distribution is suddenly subjected to a continuous

blow of fluid entering with constant temperature. Mathematically, the

problem is to solve one set of the basic differential equations, namely,

Eq. 2-12 and -13, with one boundary of the form of Eq. 2-26 or -27 and

the condition that

t( ,o) = f( ) (2-31)

where f4 E,) is a prescribed function. The solution is coprised of ex-

pressions for t( , v) and Q( , ). Solutions are presented in

1The next several sections deal with the mathematical solution of the
regenerator problem. The reader who is interested mainly in the results
and their application may proceed without loss of continuity to Section 2-8.
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Ref. 2, 22, and 27; the last two references deal with the case that

f = constant.

2-4 Solutions of the Regenerator Problem

Hausen (Ref. 10) developed a purely analytical solution. The min

results, presented in Section 2-8, are directly applicable to the balanced

regenerator, that is, a regenerator in which -A A and y, -
a 9 g

Nusselt (Ref. 23), working independently, brought the mathemical problem

to a form requiring the solution of a set of integral equations. Numeri-

cal methods, one of which is based on Nusselt's treatment and is presented

in Section 2-5, have since shown that the results for the balanced re-

generator my be applied to predict the over-all performance of an un-

balanced regenerator, provided a proper averaging procedure is emrployed.

Although quite time consuming, the numerical methods have the advantages

of being applicable to both balanced and unbalanced regenerators and of

providing the transient histories and the steady-state temperature distri-

butions in both the matrix and the fluids. Even when the temperature

distributions of a balanced regenerator are required, a numerical solution

appears preferable to direct substitution into the athematical series

comprising the results of Hausen's analytical solution.

Hausen (Ref. 11) devised the first numerical method, the so-called

heat-pole method. He divided the matrix into a number of strips or heat

poles along the x-axis. Since no conduction occurred, he could treat

each pole as though it mere an individual bed in the single-blow theory,

for which analytical solutions of a closed form were already available.

Saunders and Smoleniec (Ref. 25) solved .the single-blow problem

numerically by converting the differential equations to difference equa-

tions and integrating in a stepwise manner. Starting with a regenerator

matrix of uniform temperature, allowing it to cycle successively through

the hot and cold fluids, and observing the point in the calculations

where the temperatures repeated themselves, they detArmined the steady-

state distributions and, consequently, the regenerator performance. At

the save time they could predict the number of revolutions the matrix

turned before coming to steady-state conditions. In any practical case
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where

Ra- 14L 1 (21VTr ar7)
Ka(] CI- L-( a" 6).a i l( a( a- ) (2-39)

In the same way, Eq. 2-35 becomes

l-fa  aa -i g E'e

+ &g- e) [d-fg( )]de (2-40)

where.

-It ( ~ e) iJ1(i~1g(& - G)7

7g g

Equations 2-38 and -40 are two simultaneous integral equations
giving the tenperature distributions in the mtrix planes at the entry to

the two fluids, namely, fa and f . It will be seen that when these
distributions are known, the effectiveness can readily be found. To

carry out the calculations, the integrals are to be evaluated by means of

Simpson's rule or its equivalent, as shown below.

2-5.2 Review of Simpson's Rule for Integration

To evaluate a definite integral g( e ) de by Simpson's rule,

the interval (ab) on the e-axis is divided into an even number of parts,

each of width A . Approximating the function g(e ) with parabolic seg-

ments through every group of three successive points, one may write the

following equation with an error of the order 2

f bg( ) de : [g(a)+ 4g(a.A)+ 2g(a + 2A) + g(a+ 3A)

+ 2g(a + 4 6) + ... + 2g(b - 2A)

+ 4g(b - A) + g(b)] (2-42)1

IThe parentheses in this equation and in all remaming equations of
this section enclose the functional arguments.
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In particular, if the number of intervals is 2,

2-5.3 Application of Simpson's Rule to the Solution of the Integral

Equations

In applying Simpson's rule to solve Eq. 2-38 and -40, each of

the reduced lengths \ and A is divided into N equal parts of

length 6a and Ag, respectively, as shown in Fig. 2-3. It is unneces-

sary that N be an even number. Regarding Eq. 2-38, consider that

&a =  6. • awhere z=0O, 1, 2, ... , N. Then

f(N. .e

f~ m  A )A 3

+Ka(m . c- ) •fa(e) de (2-44)

With the understanding that a symbol of the type f will henceforth
g,n

replace the symbol of the type f (n • Ag), Eq. 2-44 takes the simpler
g g

form,

g,N- m = am" e Ka(m •6 a -  )•fa( )de (2-45)

This equation is typical of N + 1 equations which will be written by

placing m = 0,1,2,..., and N. Equation 2-40 could be written in a

similar, typical manner to represent another set of N + 1 equations.

Employing Simpson's rule or its equivalent to evaluate the integrals, one

obtains a total of 2N + 2 linear algebraic equations in which the un-

knowns are fgym and f m for m = Ol,2,...,N.

Since Simpson's rule can be used only if m is an even number,

equivalent expressions are needed for the cases in which m is odd. In

the next four sections, the integrals are developed according to whether

m is even, m= , m= 3, and a is an odd numor greater than 3.
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2-5.4 Integration for m Even

In this case Simpson's rule is directly applicable and the into-

gral in Eq. 2-45 becomes

f eaa
S0K(m " " A) " f a( a) dea a

=""Ka (M" A&a'°) " f'a(°) + 4a(m," A.- 6a) "fa( 6)

+ 2Ka(M. A a - 2 Aa ) a(2_A&) + ...

+ 2Ka (m. a -[ -2"] 6&) * f,([m- 23" 6a)

+ Ka(m" &a- Cim- 1E ] Aa) • fa(EM- 1. Aa)

+ Ka(=" 6a- &a) • fa(m • An) (2-46)

The symbol Ka n  may replace the lengthier notation Ka(n Aa), a simi-

lar change of notation having already been made in regard to f. Then

f a K(m" 6&- e) f a( e ) d&

3 "am fa,O +  am- a,l a,- 2 a,2

+ 4Ka,m-3 fa,3 + + 2Ka,2 fa,m-2

4Kam-l +K 0 'am} (2-47)

In the special case that m = 0, the integral is zero.

2-5.5 Integration for m = 1

In this case Iliffe assumed that the temperature distribution

can be tepresented in the range 0 9 6- 90 by a polynomial of the

third order:

fa Er o + al + a2e 2 + a363 (2-48)
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Substituting e- 0, a 26,a, and 3Aa the values of aO, all a2'

and a3  can be determined in terms of faO' fa,l' f , 2 and fa,3 Then

enploying Eq. 2-48 to determine faa/2 &a/2)' 2

fa,I/2 - 1 &5aO 5al - 5fa,2 .a,3] (2-49)

Thus, the interval (0, A a ) has been subdivided into two equal parts so

that Eq. 2-43 is applicable. The result is

a

K eK
=-" %21 faO +  aI/2

[5fa,0 + 15 -fa,2 +fa,31

+ ,O fa9 (2-50)

2-5.6 Integration for m = 3,

Iliffe assumed that the entire integrand could be represented

by another third-order polynomial:

K(B~ -e)• fa(e) =A 0 +A +A 2 e2 
+ A3 e

3  (2-51)

Again substituting e 0, Aa, 2 Aa, and 3 a , the values of A0, Al,

A2 , and A3  can be determined in terms of Ka,3  fao' Ka, 2 " fa.ll
Ka, " f a,20 and K,0 " fa, 3 After replacing the coefficients in Eq. 2-51

with their newly derived values and integrating with respect to .

from 0 to 36al

03 A Ka 3& a - e) f(e) de

a'3 faO +3K f + 3Ka f +K fa (2-52)
a1 ,3 a32 a,1 a, 2 a 0 3]
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2-5.7 Integration for m Odd and Greater than _3

In this case Iliffe employed the relationship

de ode j 0- ) de (2

Thus, he could use the results from the case that m = 3 in

conjunction with the result from the case that m is even. With due re-

gard for the actual meaning of the index m in the present case, for

example, observing that m- 3 is even, the final result is

S aKa(m) * fa(e) de

a93 K f 4+9mKa +9a
a6 Ka,mifa,o+ Ka,mi "fa,l+' a,m-2 "fa,2

+ [U+LK K *+ 1 Ka,m_3" fa,3 3 a,m-4"fa,4+3 a,m-5" fa,5 +

3 a,2 " a,m- 2 3 a,l "f~-

+ KK *f~~ + Ka.ohfa (2-54)

2-5.8 Final Form of the Simultaneous Linear Algebraic Equations

Applying the results of Sections 2-5.4 through 2-5.7 successively

in accordance- with Eq. 2-45 for m = 0,l,2,...,N, one obtains the N + 1

equations shown in Fig. 2-4; they are referred to as Eq. 2-55. As already

suggested, the other set of N + 1 equations my be obtained by replacing

g,N-m' Aa bm I - a,N-m' g, Kg,m P - fg,m'
and 11g, respectively. These equations are shown in Fig. 2-5 and are

referred to as Eq. 2-56.

2-5.9 General Remarks regarding the Calculation Procedure

The sets of Eq. 2-55 and -56 are 2N + 2 linear algebraic equa-

tions in f and f for m = Ol,2,...,N. The solution, therefore,
g,m a,m

represents the temperature distributions in the matrix at the planes of

entry to the gas and the air.
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The functions K defined by Eq. 2-39 and -41 always take posi-

tive values and can be evaluated by means of tables of Bessel 
functions.1

For values of 2 Tt( & - E ) greater than 4, the following formula 2

can be used to determine Jl(ix)

= (iex 0.375 0.1171875 0.10253906 0.14hl956Jx(ix) I x x 2  
__- x_...

0.2775764
- ... (2-57)

Once the distributions of f and f are established the re-

a g
generator effectiveness can be calculated as shown in Section 2-7. Also,
the temperature at any point in the matrix can be determined by means of

Eq. 2-33 and -35. Further, the temperature distributions of the fluids

can be calculated by means of Eq. 2-12.

2-6 Numerical Calculation of Balanced Regenerators

In the case that A. = Ag =A and N a = g =t a syrmetry

occurs in the two sets of algebraic equations of Section 2-5.8 which

makes them identical, namely,

f = 1 -f (2-58)g,N- m a,m

In this case it is sufficient to solve just one set of equations and to

enploy Eq. 2-58.

2-7 Regenerator Effectiveness obtained from Numerical Calculations

In this section the effectiveness is calculated from the viewpoint

of the heat capacity of the ratrix. The matrix enters the cold stream

-vdth a certain enthalpy and leaves it to enter the hot stream with a lower

enthalpy. In steady conditions, the difference between these two enthalpies

1See, for example, E. Jahnke and F. Ernde, Tables of Functions with
Formulae and Curves, Dover Publications, New York, 1945; p. 227.

21bid., pp. 137-138.

WADC TR 55-13 37



is the actual amount of heat energy transferred from the matrix to the cold

stream; an equal amount of energy is picked up by the mtrix as it tra-

verses the hot stream.

The ideal amount of heat energy transferred is the quantity that the

cold air would pick up if its temperature had been raised to that of the

incoming hot gas. The ratio of the actual total amount to the ideal total

amount is the regenerator effectiveness. The following calculations are

made with the above procedure in mind.

For a unit width of matrix, the rate at which heat is carried by the

matrix as it moves into the cold stream isCo
fLg,o- a,o =

-~ a( ) d

m"c r Aa
vcO, • ha sf o a dta (2-59)a ha

Similarly, the rate at mhich heat is carried by the matrix as it moves

out of the cold air is

m"c oAg_ vC"' • 9 S f (.)d g(2-60)

g,o a,o g

The ideal rate of heat transfer would be obtained if the teuperature

of the cold air would change from 0a.o to 0 . Accordingly,

1 m c Y* (2-61)@ 92- @ .9 a p,a
g~o a~o

Hence, the regenerator effectiveness is

a MC

f da- -- g f" " f ) d (2-62)
a CP.9a a f

The integrals in Eq. 2-62 are conveniently evaluated in terns of the

numerical values of fa and f obtained from the solution outlined in
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Section 2-5. Applying Sinpson's rule for the case that the number of 1
intervals N is even,

f(F) d4 = T fof fi 22 + 43 2f f + '

2fN-2 4fN-1 + fN] (2-63)

And if N is odd, the technique of Section 2-5.7 my be employed with

the result that

f~. +Lf + 2f~

+ 4f6 + 2f7 + ... + 2fN-2

+ N-1 + f1 (2-64)

2-8 Results of the Theory of the Balanced Regenerators

The results of Hausen's analytical solution or of the corresponding

numerical calculations are most conveniently represented graphically.

Figures 2-6 and -7 give the effectiveness of balanced regenerators

for values of A and W in the range of practical interest. The

curves were drawn from data given by Johnson (Ref. 15). In Fig. 2-8 curves

of constant utilization factor are presented. The graphs illustrate the

following properties of regenerators:

(1) For a given effectiveness there is a minimum reduced length k.

below which that effectiveness cannot be attained.

(2) An increase in the reduced length A& (or actual length L) is

more effective in the case of a regenerator with a small value of A

than one with a large value of A

(3) For a given value of A ,the effectiveness decreases as It

increases. This effect is quite large for small values of A•
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2-9 Unbalanced Regenerators

The results of Section 2-8 can be used to obtain the effectiveness

of unbalanced regenerators, at least in the range of practical applica-

tion. A method of procedure suggested by Saunders and Smoleniec (Ref. 25),

namely, to employ a system of arithmetic averages, has been found to yield

results which deviate from the exact values. Two methods of procedure;

based on harmonic averages, have been found to give virtually equal values

and better accuracy when conpared with results determined by the much more

lengthy procedure described in Sections 2-5 and -7. In the next two

sections it is supposed that the parameters A and R on both sides

of the regenerator are known.

2-9.1 Use of Harmonic Means of Dimensionless Lengths
First, the harmonic means of Aa and A and of Ia and

T are determined:
g

2.__ 1 1 2 1 1 (2-65)

Am a Ag UIM It a ltg9

Second, employing charts for the balanced regenerator find rRegem using

the calculated values of A and ILm. The effectiveness ig is

practically equal to the effectiveness of the given unbalanced regenerator.

2-9.2 Use of Harmonic Yean of Effectiveness

Hausen suggested the following procedure. Determine the effect-

iveness ueg,a of a balanced regenerator with parameters A. and Ia

and the effectiveness iReg,g of a balanced regenerator with parameters

Ag and U g . Then the effectiveness of the given unbalanced regenerator

is practically the harmonic mean. Thus,

2 1 1.. = 1 + (2-66)

IRg,m 1lReg,a IReg,g

2-10 Effect of Curvature in the Drum-Type Matrix

In Appendix A it is shown that a simple transformation allows all re-

sults of the calculations for a flat matrix to be employed in dealing with
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a drum-type matrix. The major changes occur in the transformations of I
Section 2-2.6, where 4. and are defined. The new values of F,

and are

r 2  2h~m  i

= 2• K • (2-67)

and

r2  r2

hSi 2'Kp 0 . r (2-68)m 2

In these equations ml is the mass rate of fluid flow per unit length of

the regenerator axis; K is the fraction of the circle subtended by the

fluid in question; r is a general radial distance; ri is the inner

radius of the drum; 0 is the angle measured from the plane of entrance;

and w is the angular speed. These coordinates allow for the changes

of tenperature distributions caused by the curvature of the matrix.

The corresponding new values of A and T are:

~hS mI

A hS c L (2-69)
mp

and

hS0' . 2irK (2-70)

where L is the thickness of the drum and m" is the mass velocity
m

of the fluid at the mean radius of the drum.

2-11 Simplified Theories for Regenerators with Small Reduced Periods

In aircraft applications, the reduced periods for the regenerators

are rather short, of the order of magnitude of 5. The short reduced

periods can be due either to high matrix speed v or to the small ratio

of the water equivalents of the flowing fluids to that of the "flowing"

matrix.
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For infinitely short periods, i.e., for 1a = g- 0 Nusselt

(Ref. 22) shoved that the regenerator would have the same thermal charac-

teristics as a recuperator. Under this condition, the matrix temperature

depends only on x (or I ). is independent of y (or v ), and is the

same in the two streams. Also, the temperatures of the two fluids are

functions of x only. For this problem, Nusselt considered both the

balanced and unbalanced cases.

Iliffe (Ref. 13) further showed that for unbalanced regenerators with

infinitely short periods, if M c y* =M" c Yg, then the effective-
a ppa a g P,g gness would be that of an unbalanced recuperator, namely,

I
IRec = 1 - (2-71)

1 +- + -
Aa Ag

For balanced regenerators this reduces to the balanced recuperator

effectivene ss,

1RA = (2-72)

According to Tipler (Ref. 29), the problem of the high-speed re-

generator with linear temperature distributions of the matrix was solved

by Lubbock and Bowen (Ref. 19). The general assumptions of Hansen's

theory are the basis of the solution. Tipler represents the results as

follows:

Aa 2 = coth lta + coth g (2-73)

11 a YIlReg 2g a2

Tipler compared values of IRSj thus obtained with those from Hausen's

.theory for balanced regenerators. He found that for I = 0 the agree-

ment is good and that for other values the effectiveness derived by this

method is less than Hausen's values. For values of IT up to 10 the

error is within 4 per cent. Up to R - 5, which covers a large range of

practical interest, the maximum error is 1 per cent.
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Corbitt (see discussion of Ref. 13) presents the simple equation,

= (- (2-74)

where iRec is the value obtained from Eq. 2-71 or -72. This relation

appears to be accurate within 1 per cent in the range of IReg from 0.8

to 0.98 and of U from 0 to 0.6.

2-12 Effect of Conductivity on Regenerator Performance

The assumption of Section 2-1.4, which specifies that the matrix be

made of a certain type of thermally non-isotropic solid, cannot be exactly

fulfilled in practice. In the next sections the influences of conduction

in the matrix are considered.

2-12.1 Conductivity in the x-Direction

When the generil procedure of Section 2-2 is followed and the

conductivity in the x-direction is admitted to the problem, Eq. 2-5 ap-

pears with another term:
v"C ep ON kl 8t2t

M!'1 + oMv2 (2-75)
mp~ dy ' pay ax (272

where k is the effective conductivity of the matrix in the x-direction.

Also, Eq. 2-7 would be replaced by

vC t MI-hS (t-Q) +k(l- ) (2-76)

Equation 2-9 would, therefore, remain unchanged and together with Eq. 2-76

would determine the rate of heat transfer in the regenerator. It appears

that this general problem has never been solved analytically.

However, the case of infinitely large conductivity in the x-

direction was solved by Nusselt (Ref. 22). In this case the matrix tem-

perature is independent of x and the maximum effectiveness is 0.5.

This theory could possibly be applied to very short matrices.
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Also, Hahnemann (Ref. 8) solved the special problem of the case

that .= = 0. Here the heat capacity is not a criterion of per-

formance; it may take any value without affecting values of I or A

Hahnemann found that to represent the results he could use the parameter,

- hSL (2-77)

which represents the ratio between the heat transfer by convectin and

that by conduction. It maybe observed that 4 increases as k de-

creases, so that for a matrix with zero conduction in the x-direction,

as assumed by Hausen, 4t = co.

The essential results of Hahnemann's work are shown in Fig. 2-9.*

Hausen's matrix is represented by the straight, diagonal line for 4 = 00.

It is observed that as A decreases (i.e., k increases), the regenerator

effectiveness decreases. For a given value of 4 , there is an optimum

value of A , at which the regenerator effectiveness is a maximum.

The last observation may be explained as follows: The general

tendency, as shown in Fig. 2-9, is that IReg rises with increasing A
However, if A is already large, then the rate of change of jReg

with respect to A is rather small. Now, suppose that &, is already

large and is increased by diminishing m", say, by increasing the super-

ficial cross-sectional area of flow. This change would have no influence

on 4> . However, the heat conduction per unit rate of flow would increase,

and ata certain value of A , namely, the optimum value, this loss due to

the increase of conduction offsets the gain due to the increase of A

As A is increased further, the conduction losses become excessive and

Reg diminishes.

Another parameter used in Fig. 2-9 is the quantity,

A/ E- k(l - 3) / (m" cp L). It my be considered as the ratio of the

rate of heat conduction along the matrix to the rate at which heat is

carried by the fluid. Cox and Stevens (Ref. 5) used Hahnemann's results

for balanced regenerators to plot Fig. 2-10, which covers the range of

interest in regenerator design. Again, the parameter is A/D. This

* This figure was deleted from this report. It is available in the
literature cited as Reference S.
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NOTE

This figure has been deleted
from this technical report, but
is available in the literature
cited as Referenee 8 of this
report,.

WADJ TR55-13 48



.4r

000

0 z U0
zz

0 0

z0

IL Z)I U) 00
00

Id Ow
Z 0

Id w

00 0 Q

La- U- N
z 0w

SS3NAIJ.3ii wO N9& N O±fQ

WADC TR 0~1



parameter ould seldom be more than 0.02, which in the usual range of f
operation reduces the regenerator effectiveness by less than 0.015. For

most design purposes the effect of conductivity in the matrix could be j
neglected. It is advisable to check this effect when dealing with very

short matrices.

2-12.2 Conductivity in the z-Direction

In the main theory the matrix was assumed homogeneous (see

Section 2-1.1). This iuplies that solid particles, as well as voids,

have infinitesimal volumes. Under such conditions, each solid particle

would be affected directly by the flowing fluids while neighboring solid

particles would not affect each other. A real matrix, however, consists

of solid elements of finite size, and some solid particles do not come in

direct contact with the fluids but exchange heat by conduction through

neighboring particles. For example, if one considers a matrix built of

solid strips as shown in Fig. 2-11, then the particles at the center of

a strip are heated and cooled by virtue of the heat conduction through

particles lying between the center and the surface. If those strips are

of infinitesimal thickness, then each solid particle would exchange heat

directly with the flowing fluids and the original assumptions would still

be satisfied. Also, if the conduction of the strip in the z-direction is

infinitely large (while that in the x- and y-directions are zero), then

the original assumptions are also satisfied, because there ould be no

resistance to heat flow between the flowing fluids and the inner solid

particles.

The case of a matrix with finite conductivity in the z-direction

and zero conductivity in the x- and y-directions was considered by Nus-

selt (Ref. 22). He gave a graphical method of solution. Ackerann

(Ref. 1), a student of Nusselt, undertook an analytical solution and de-

veloped an iterative method which is very tedious.

The effect of finite conductivity in the z-direction was esti-

mated by Tipler (Ref. 29) in the following manner: He considered the

case of a slab whose surface temperatures change sinusoidally. He calcu-

lated the heat stored in the slab at the peak surface temperature and
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corpared it with the heat that would be stored in the slab had it been of

infinite conductivity. He found that the ratio of the two amounts would

be 0.99 or more for practical regenerators. Hence, for all practical

purposes, the effect of finite conductivity in the z-direction can be

neglected.

Nusselt (Ref. 22) also gave a solution for the case of a strip

matrix with infinitely large conductivity in the x-direction, zero con-

ductivity in the y-direction, and finite conductivity in the z-direction.

The solution was given as expressions of t and 0 in Fourier series

in terms of y and z.

2-12.3 Conductivity in the y-Direction

In the main theory the effective conductivity in the y-direction

is assumed to be zero. The case of finite conductivity in that direction

seems never to have been considered in the literature. However, the case

of infinitely large effective conductivity in the y-direction is equivalent

to that of infinitely high matrix speed v, which has been discussed in

Section 2-11.

2-13 Effect of Leakage on Regenerator Performance

The theoretical treatments are based on the assunption that no leakage

occurs. In practice the leakage diminishes the effectiveness by cooling

the hot gas before its heat capacity can be most fully utilized in the

matrix.

Harper and Rohsenow (Ref. 9) calculated the reduction in the re-

generator effectiveness assuming that half the leakage occurs at either

side of the matrix. Their results are shown in Fig. 2-12 for several

values of fractional leakage A /m. One may employ this chart to obtain

the effectiveness Reg of a regenerator with leakage. If it were

assured that all leakage occurs at the downstream air-side of the matrix

(i.e., leakage into the gas at the upstream end of the gas-side) the cor-

rection would be nearly doubled, with further reduction of the effective-

ness. However, it is more probable that the leakage would be less on the
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downstream air-side than on the upstream side. Consequently, an effective-

ness calculated by means of the chart in Fig. 2-12 would be slightly low.

For the practical range of effectiveness and for tolerable values of

the leakage, the correction is about 0.01, which is not serious. However,

the effect of leakage on the thermal efficiency of the entire gas turbine

power plant is a serious matter. This subject receives detailed attention

in Chapter 4.
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Chapter 3: PROPO ES OF M NERATOR MATRICES

3-1 Void and Solid Fractions

Several geometric properties and some of the mechanical and thermal

properties of matrices are readily expressed in terms of the void fraction,

which is denoted by P. The co-value, the solid fraction (1 - P9), of a

given matrix of mass ms and corresponding total volume Vtot is the

ratio of the apparent density to the true density of the solid:

ms es, (3-1)
(1 -)='tot s- s(-)

It is recomnended that Eq. 3-1 be enployed as the operational definition

of a rather siple laboratory procedure to determine P for matrices of

heterogeneous construction having unknown packability.

3-1.1 Flame Trap Matrices

The void fraction of flame trap matrices is equal to the ratio

of through area to facial area. This ratio is easily calculated if the

passages repeat themselves in any uniform Ymy.

3-1.2 Wire Screen Matrices

Consider screens made of wires having uniform diameter D ex-

pressed in feet. The number of wires per foot in one direction is n,

and in the other n2; the screens are stacked so that the number of layers

per foot of length is n3; then neglecting any bends of the wire, the

solid fraction is

(1 -(3) = jD 2 (nl + n2) n3 (3-2)

If the screens are closely packed, n3 - I/(2D) and

(1 -)= D( +n 2 ) (3-3)

Further, if n1 - n2 - n, then

(1 -3) =-- D • n (3-4)

WAC TR 55-13 55



3-2 Heat Transfer Surface Area per Unit Volume

The effective heat transfer surface per unit volume of matrix is

Sin S = S (3-5)=Vtot  Mls)

The last expression allows S"' to be evaluated in terms of the mass of

the solid material used to build the matrix, if it can be assumed that

the contact areas are negligible conpared with the areas exposed to the

fluids.

For exarple, consider a matrix made of any metal strips of uniform

rectangular cross section; let a be the thickness and b the breadth

of the strips. If the total length of the strip is I , the total sur-

face area is 2(a + b) i, and its mass is ab I • s Consequently,

for such a matrix Eq. 3-5 yields

_. 2(1 - 3) (1 +) (36=" + (3-6)

And if the strip is very thin, so that a <b,

sm = 2(l (3-7)
a

In a similar way, if wire of diameter D is used to construct the

matrix, Eq. 3-5 becomes

se _ 1 -(3-8)
D

In particular, if the wires are in the form of closely packed screens of

square mesh (n by n wires per foot),

Sm = ofn (3-9)

3-3 Free Area of Fluid Flow

The free flow area is needed to evaluate the velocity through the

matrix interstices, which is of interest in determining the pressure drop
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and heat transfer characteristics of the matrix. In the following dis-

cussion it will be convenient to denote the ratio of the free flow area

to the facial area by the synbol cx.

In a flame trap matrix cx= (. However, in matrices of heterogeneous

construction and even in orderly wire-screen matrices, the free flow area

becomes a rather nebulous quantity. In the special case of closely packed

wire screens the following approximation has been enployed:

aC= (1- nD)(l - n2D) (3-10)

Further, if nI = n2 = n,

a.= (1 -D) 2 (3-11)

Notice that the free flow area obtained by using a. lies in a plane

normal to the main direction of flow. However, as in the case of tube

banks it may be desirable to erploy the absolute minimum cross-sectional

area when dealing with the pressure drop and heat transfer properties of

matrices; this minimum may be in an oblique plane.

3-4 Equivalent Diameter

In the case of turbulent flow inside tubes, it has been found that

both pressure drop and heat transfer data obtained with passages of any

different shapes are well correlated if the so-called equivalent diameter

is enployed as characteristic length in the dimensionless groups. The

equivalent diameter is

D _ 4 " (cross-sectional area) (3-12)
e wetted perimeter

In the case of laminar flow, the use of the equivalent diameter has not

been quite so satisfactory and a separate correlation is needed for each

shape. Nevertheless, rouch data are often presented in terms of De.
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For a wire screen matrix, Eq. 3-12 yields

4mA 4 (
De ( (3-13)

It follows that if the screens are of uniform mesh and closely packed,

4(l - Dn) 2

D = (3-14)
Irn

3-5 Matrix Heat Capacity

The heat capacity of a matrix is equal to the product of its mass

and the specific heat of the material. It follows that the heat capacity

per unit volume of the matrix is

C- ( =(1- P) Cps (3-15)

3-6 Pressure Losses

The static pressure drop from the inlet duct to the outlet duct on

either side of the regenerator my be treated as though the matrix vere

a recuperator, particularly if the matrix is of the flame trap type. Thus,

the pressure drop is conprised of three parts: the entrance or contraction

loss, the core or frictional loss, and the exit or expansion loss. From

an equation used by Kays (Ref. 16) and by Kays and London (Ref. 17), we

my write

G F(,KT+ 2K )+(l +cc 2)(2_)+f L ] (3-16)P l P 2 ex T10 e 1_]cc •2g ylI e 1

where K and Kex are respectively the contraction and expansion co-

efficients based on the dynadc pressure inside the core; T is the ab-

solute temperature, subscripts 1 and 2 corresponding to the inlet and

exit conditions, respectively; f is the friction factor of the core,

also based on the dynamdc pressure in the core; D is the equivalent
e

diameter of the core passages; Tb is the bulk mean temperature of the
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fluid; p3 = lb/ft2; Eyi] = lb/ft3; and' C0l =lb/sec ft2.

In most cases, the effects of the entrance and exit are relatively

small compared with the frictional losses. Therefore, it usually is un-

necessary to evaluate Kc and Kex with great accuracy; values in the

literature for reasonably similar situations my be employed. For

example, Kays (Ref. 16) has given values for some tubular constructions.

In the case of wire screen matrices of reasonable length only the last

two terns in the brackets of Eq. 3-16 need be considered because the

other is, relatively, rather small.

The friction coefficients f for laminar flow in matrices have been

correlated by means of the typical expression,

f = C (3-17)

Re

where

GD
= (3-18)

3-6.1 Friction Factors for Flame Trap Matrices

Locke (Ref. 18) found that the friction coefficient for smooth

flame trap regenerators coposed of round tubes lies within 2 per cent

of the theoretical values obtained using C = 64.

Romie et al (Ref. 24) performed pressure drop tests on two

flame trap matrices, one made of flat plates and one of cylindrical tubes.

After taking the entrance and exit losses into account, the authors found

that the corresponding theoretical values, namely, C = 96 for the flat

plates and C = 64 for the tubes, were in fair agreement with the experi-

mental values, particularly if 1 1000.

'he mass velocity G is based on the facial or superficial area.
This is to be distinguished from a mass velocity based on the free or
through area of flow. In our symbols the mass velocity based on the free
area is G/cx. A bracketed expression E...J is to be read, "the units
of ... are".

WADC TR 55-13 59



Johnson (Ref. 15) performed single-blow tests on matrix materials

of two shapes shown in Fig. 3-1. The lengths were varied from 0.073 to

0.292 ft by enploying one, two, or four elements in series. The range of

the Reynolds number was 25 to 200. His experimental results -mre corre-

lated by means of Eq. 3-17 with C = 17.7 and n = 0.78 for the matrix

material of 0.030-in. spacing and C = 29.8 and n = 0.87 for the

material of 0.021-in. spacing. The maximum deviation of the experimental

points from the mean correlating lines was about 25 per cent, but on the

average it was about + 15 per cent.

Cox and Lamb (Ref. 14) enployed six flame trap matrices on a

model rotary disk type regenerator. The matrices were made with triangular

passages of a type similar to the ones used by Johnson. The ratio L/De

took values from 31.2 to 82.5, and the Reynolds number varied from

about 50 to 400. The authors' coirelation can be represented by

Eq. 3-17 if n = 1 and

N
C = 44 + (1.66 - L2) Re (3-19)

In their work, o lay between 0.7 and 0.83.

3-6.2 Friction Factors for Wire Screen Matrices

Johnson (Ref. 15) performed tests on four wire screen matrices.

Results of the work and a description of the matrices are presented in

Fig. 3-2. It may be noticed that the constructions of Matrices A and B

apparently differ only in the total number of layers. The results from

Matrices C and D,. which have the same void fraction, have been correlated

with a single curve. The dotted line may be represented by Eq. 3-17 with

C =25 and n = 0.5.

Jakob, Kezios, and Sogin (Ref. 14) performed steady-state tests

on a wire screen matrix of 0.0075-in. diameter wire and 35 mesh; there

were 79 layers, and the matrix length was 1 inch. The authors found a

virtually uniform value for f, namely, 4.8, in the range of NR from

about 900 to 1200.
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Romie et al (Ref. 24) observed that the pressure-loss coefficient,.

in addition to depending upon the Reynolds number, depends upon the follow-

ing three items:

(1) The area ratio ot. For example, the pressure-loss coefficient

was found to double its value when cx was reduced by half.

(2) The spacing between screens, that is, the number of screens per

unit length. For example, the pressure-loss coefficient for an assembly

of unspaced screens decreased 15 per cent when the screens were separated

by a free space of 1/32 inch.

(3) The total number of screens in the assembly. The pressure-loss

coefficient decreased or increased as the nuber of screens increased

depending, respectively, upon whether the screens werel closely or widely

spaced.

More experimentation on configurations of wile screens are

needed.

3-7 Heat Transfer

The coefficient of heat transfer h, which must be erployed in

evaluating A and it (see Eq. 2-18 and -19), has been found by

experiments based on the single-blow technique (e.g., Ref. 15, 18, and 24)

and on results from periodic regenerators (e.g., Ref. 4 and 20). Also,

coefficients obtained from tests on certain recuperator cores may be

useful (e.g., Ref. 17).

It has been customary to correlate the coefficients by means of the

following two typical equations:

u C. VRe (3-20)

and . z..
C2

Nst'= (3-21)
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where

hD
N e (3-22)

k

Nst = (3-23)
p

and the Reynolds nuzber is defined by Eq. 3-18; k is the conductivity of

the fluid evaluated at a mean temperature. Since the Stanton number is

the ratio of the Nusselt number to the product of the Reynolds number and

the Prandtl number (Npr = Cp ,&/k), the relationship between C1  and C2

is

Cl= .00 (3-24~)1I = •~ *C2

For air the value of Npr is 0.689 + 0.0o5 in the range of temperature

from 200 to 800F.

In the next two sections, data for flare trap and wire screen matrices
are presented. Regarding the relative merit of the two types of matrices,

Johnson remarks that the lowest weight for a given performance is obtained

with a fine wire screen matrix, but the pressure drop is higher than for

a smooth flare trap matrix. The saving in weight is more marked than the

increase in pressure drop; however, when the partitions required in con-

structing the screen matrices are considered, the advantage in weight may

be reduced.

3-7.1 Coefficients of Heat Transfer for Flare Trap Matrices

Because the passages of regenerator atrices are small, the flow

is expected to be laminar. Glaser (Ref. 7) has shown that for a circular

tube with linear tenperature distribution (uniform heating) in the axial

direction along the wall and with constant fluid properties, the limitingI

IThe limiting value of the Nusselt number is the value toward which
the Nusselt number approaches, by virtue of pure conduction, as the Rey-
nolds number approaches zero. Also, this is the value that would occur
in a very long passage or in a passage where the velocity and temperature
profile are everywhere fully developed (cf. Eq. 3-25).
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value of the Nusselt number NNu 4.36. Norris and Streid (Ref. 21)Nu =O . The ex-assued constant wall temperature and obtained N uo = ".
perimental results on cylindrical passages by Locke (Ref. 18) fall between

the values obtained by Glaser and by Norris and Streid. The experimental

results of Romie et al (Ref. 24) on a circular-tube matrix deviate about

10 per cent from Glaser's theoretical line in the range of N

from 7 to 30. Below this range, down to about 3.5, the experinental

data are about 20 per cent higher than the theoretical values.

Clark and Kays (Ref. 3) performed calculations and steady-state

experiments to study the ladnar heat transfer in small rectangular pas-

sages of various aspect ratios. They correlated their results by reans

of the typical equation,

Nu -N 1  
* c NRe ()

N u=NNu, 00[1+ C3 0(L/D ) n13-5
e

Both NNu and C depend upon the aspect ratio' Y/X and how the
NcOD 3

tube wall is heated.

For a good approximation to the regenerator matrix, it may be

assured that the temperature distribution is practically linear. According-

ly, the recommended values of NNu,co and C3  are those for the case of

uniform heat input. The authors' values of N Nuo ° for this case are

shown in Fig. 3-3, and their suggested values for C my be represented
3

by the equation,

I

C3 = 0.0025 + 0.020 - (3-26)
3 Y

The experimental results of Romie et al (Ref. 24) on the flat plate matrix

(infinite aspect ratio) deviate about + 10 per cent from the values given

by Clark and Kays.

Cox and Lamb (Ref. 4) tested six matrices with triangular pas-

sages in a model rotary regenerator. Their results for all the atrices

ISee the inset in the graph of Fig. 3-3.

WADOC TR 55-13 65



9i

• y,

N Nu, o

5\
4-I

0 0.2 0.4 0.6 0.8 1.0
RECIPROCAL ASPECT RATIO X-

II

FIG. 3-3 LIMITING NUSSELT NUMBERS FOR
RECTANGULAR TUBES WITH UNIFORM

HEAT INPUT-
m3 55.a3 66

7~ Lw



deviated by about 10 per cent from the correlating line represented by

Eq. 3-25 with NNu, = 2.4 and C3 = 0.0735. The materials were like

those used by Johnson (Ref. 15). With reference to Fig. 3-1, it may be

observed that the passages were approxizately isosceles triangles with

included right angles. For the equilateral triangle with uniform heating

at the wall NN = 3.00 (Ref. 3).

It has been found inpossible to fit Eq. 3-25 to all of

Johnson's data for the matrices of Fig. 3-1, and it is believed that the

correlation of Ref. 4 is the more reliable one for flame trap matrices

with triangular passages. The author's original correlations, which

appear in the form of Eq. 3-21, are tabulated below. The correlations

represent the data in the range of NRe from about 50 to 200. For

NRe < 50, the Stanton numbers appear to reach limiting values. Average

values of the Stanton number in this range are denoted by NSt,av and

are presented in the next to last colun of Table 3-1.

Table 3-1. Heat Transfer Correlations for Flame Trap Matrices (Ref. 15)

Matrix
Spacing L C2  1-n Nst,a v  NNUc
(in.) (ft)

0.030 0.0729 - - 0.045 -

0.030 0.146 2.7 1.0 0.037 1.96

0.030 0.292 0.845 0.81 - 1.6

0.021 0.0729 - - 0.032 -

0.021 0.292 0.205 0.55 0.024 1.5

Further, Johnson remarks that at high Reynolds numbers his Nus-

selt numbers tend to become constant. Average values of the Nusselt num-

bers in this region are denoted by NNupc and are presented in the last

column of Table 3-1.

In the so-called Fraenkl packing, two ribbons having corruga-

tions at 45* to the ribbon edge are put together so that their corruga-

tions are at right angles to each other. Then the two ribbons are wound
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in a spiral to form a disk of desired diameter and of a height equal to

the ribbon width. One or more such disks are placed in series to form

a matrix of desired length. Sometimes spacers are used to separate the

packings. These packings have been eployed mainly in regenerators for

liquefaction of gases. The heat transfer characteristics of Fraenkl pack-

ings have been investigated by Glaser (Ref. 6) and by Lund and Dodge

(Ref. 20). Glaser correlated his results with the equation,

40.e07(L/De) + 0.65

N 10=IO ° ('/Ie + o.0 (3-27)

3-7.2 Coefficients of Heat Transfer for Wire Screen Matrices

Values for h obtained by Johnson (Ref. 15) are in general

higher than corresponding values for flame trap matrices. Of course,

the pressure losses are correspondingly higher. Johnson's correlations

can be represented by means of Eq. 3-21. In each case n = 0.5. Values

of the constant C2 are presented in Table 3-2. The range of the Rey-

nolds number is about 25 to 400. Since some question has been raised

regarding Johnson's data for flame trap matrices, the same question arises

concerning his data for wire screen matrices. Homever, there are no

other data available on closely packed screens for comparison.

Table 3-2. Constant C2 to be Employed in Eq. 3-21

for Wire Screen Matrices (Ref. 15)

Matrix Description

(cf. Fig. 3-2) Iesh Wire Diameter No. Layers C2

(in.- l) (in.)

A 30 0.0105 100 0.515

B 30 0.0105 150 0.515

C 20 0.009 100 1.00

D 4o 0.0o45 98 0.74
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Romie et al (Ref. 24) employed two wire screen matrices. One

consisted of 36 layers of 24~ mash screen made of 0.0075-in. diameter wire

and the other of 28 layers of 16 resh screens made of 0.013-in. diameter

wire. The layers were spaced 1/32 in. apart. Their Reynolds numb~er..

based on wire diareter as characteristic length, varied from about 20

to 500. The authors' most reliable results are in surprisingly good

agreement with data for flow normal to single wires, navely,'

_D G D 0.52

0.2 043c (3-28)
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Chapter 4 EFFECT OF REGENERATOR PERFORMANCE

ON THE GAS TURBINE POWER PLANT

4-1 Actual Cycle of the Gas Turbine Power Plant

The actual gas turbine cycle differs from the ideal cycle in several

ways. With reference to Fig. 4-1, mhich is a temperature-entropy diagram

of an actual cycle, two importance differences mey be observed:

4-1.1 Actual Work of Compressor and Turbine

First, the compression and expansion processes are isentropic

in the ideal compressor and turbine but not in the actual ones. Increases

of entropy occur in the actual processes. These increases are represented

in the Ts-diagram by the amounts of shifting of the Points 2' and 4',
the ideal states,'to Points 2 and 4, the actual states. These changes

of entropy mnnifest themselves as an increase of the power input to the

compressor and a decrease of the power output from the turbine. The net

effect may be regarded as either a decrease of the output of a given

plant or an increase of plant size for a given output.

It is customary to exress the deviations between the actual

and ideal units in terms of the compressor efficiency,

h2, -h1h 2 1- hl 
(4-1)

and the turbine efficiency,

.4 (4-2)
It h3- h4,

4-1.2 Pressure Losses

Second, there are pressure drops in the low-and high-pressure

sides of the cycle on account of ducting and any heat exchanger that may

be present. Hence, p 3 - P 2 and P4 - pl. The effect is to decrease

the power output and the power plant therml efficiency.
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4-1.3 Leakage

A third difference between the ideal and actual regenerative

cycle is the leakage from the high-pressure air to the low-pressure

exhaust gas. Some is passed by the seals, and sore is carried over by

the rotation. On account of this leakage, the amount of fluid passing

through the conpressor is greater than that passing through the turbine.

Hence, a larger and more powerful compressor is required for a given tur-

bine output. The net result is a decrease in the theral efficiency of

the power plant.

4-2 Thermal Efficiency of the Actual Cycle

The power output of the plant and the thermal efficiency of an actual

gas turbine cycle operating with practical conpression and expansion units,

vvith pressure drop in the intermediate ducting and regenerator, and with

leakage from the air side to the gas side are developed in Appendix B.

The calculations are based on the assunptions that the fluid is thermally

and calorically perfect and that the fuel has negligible influence on the

thermodynamic properties.

4-3 Evaluation of the Effects of Leakage and Pressure Drop

Harper and Rohsenow (Ref. 9) enployed the results of Appendix B or

their equivalents, to calculate and demonstrate the effects of leakage

and pressure drop for the following operating conditions:

Air inlet tenperature, 60F, or T = 520OR

Maximum tenperature, 150OeF, or T = 1960"R
3

Conpressor efficiency, IC = 0.85

Turbine efficiency, it = 0.88

The authors expressed their assumed values-of leakage and pressure loss,

respectively, in terms of the leakage fraction Am/m and the sum of

the pressure drop ratios , (Up/p). The quantity m is the mass rate

of flow through the conpressor; and with reference to Fig. 4-1,

= P2- P3 + (43)
p P 2  pl
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The ratio of the first term of Eq. 4-3 to the second, which would be de-

noted by c in Appendix B, was not given by Harper and Rohsenow but

appears to have been taken as 3/7 in one part of their calculations.

The authors calculated the maximum thermal efficiency rthmaX and

the corresponding (optimum) pressure ratios for the cases that Am/m = 0,

0.05, and 0.10 and that , (ALp/p) = 0.05, 0.10, and 0.15. Results

of their study are discussed in the next two sections.

4-3.1 Effect of Leakage
As has already been remarked in Section 2-13, the influence of

leakage on the effectiveness of the heat exchanger is small. The influence

of leakage on the power plant performance is shown in Fig. 4-2a and -2b.

With regard to increasing values of im/m, the following changes iiay be

observed:

(1) The maximam attainable thermal efficiency decreases. This is

mainly due to the decrease in turbine output, for the mass flow in the

turbine is less than the mass flow at the intake of the power plant.

(2) The optimum pressure ratio rp,opt dicreases. The effect is

most pronounced at lowest values of the regenerator effectiveness.

(3) The work output per pound of air entering the power plant de-

creases. This is due to the decrease of both the ass flow in the tur-

bine and the optimum compression ratio.

4-3.2 Effect of Pressure Drop

The effect of pressure drop is shown in Fig. 4-3a and -3b. With

regard to increasing values of 7 (Lp/p), the following changes may be

observed:

(1) The maximum attainable thermal efficiency decreases. This is

due to the increase in the turbine expansion ratio.

(2) The optimum pressure ratio increases.

(3) The work output per pound of air decreases.-

WADOC TR 55-13 73



0

0.0

AtO 00a C
0),

N C CL

0001 Z

OZt.. . LLx

cc0 Cf
0. -) -L - 0 w w

K)) 0E 0f N*

0 00 0 o. wa

1&~~~_ LO~D~A WfWXV 01A

WADC TR tL137C~j c qt O It



Z5 0

w 0 r
>

00D

ew
00 wz 0

"n'g i OndiO3 MrIl~ 80MIR 310A0

UDCTRS..-13



4-4 Effects of Regenerator Speed, Length, and Mass Velocity

Harper and Rohsenow (Ref. 9), enploying the results of Saunders and

Smoleniec (Ref. 25), also showed how the rotational speed N, regenerator

length L, and the mass velocity in" affect the power plant. In con-

sidering any one of these three variables, the other two were regarded

as constant. Also, the net output of the gas turbine power plant was

maintained constant under the conditions specified in Section 4-3. A

balanced regenerator with [A = 5 and it = 4 was taken as a basis

for reference. The results of the authors' discussion are summarized

in the next three sections.

4-4.1 Effect of Regenerator Speed

An increase of regenerator speed decreases !t proportionately

but leaves A unaltered. The increase of speed increases the carry-over

losses. It also influences the leakage through the seals insofar as the

regenerator speed affects the optimum pressure ratio. Regarding the

pressure losses, Harper and Rohsenow took Z (Ap/p) to be a fixed value.

The results of their calculations are shown in Fig. 4-4. It

may be observed that the maximum cycle efficiency reaches a maximum at a

certain speed; then it decreases on account of the increasing carry-over

losses. The matrix relative volume V increases since the work per

pound of air N decreases while total power output remains constant.

The optimum pressure ratio rp,opt  decreases as the speed increases.

4-4.2 Effect of Regenerator Length

In this case the reduced length A changes while the reduced

period TL remains constant. The results of calculations for a fixed

value of LvVm are shown in Fig. 4-5.

The pressure drop 2 (Ap/p) increases with the matrix length.

Again, the maximum thermal efficiency reaches an optimum value; then it

decreases on account of the rising pressure drop. Since the work per

pound of air entering the turbine (denoted by W) decreases as the matrix

length increases, the matrix facial area as well as length increase to
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provide a given fixed total power output. For this reason the relative

volume V increases more reidly than just linearly.

4-4.3 Effect of Mass Velocity

A change of the rate of flow may affect both the reduced length

and the reduced period, because it my be accompanied by a change in the

value of the coefficient of heat transfer h. For example, if it is

assuwed that the flow through the mtrix is such that

h ,,, (mr)1/2 (4-4)

then

2

and

n2 (4-6)

Assuning that the pressure drop increases linearly with m" and that

m/m remins constant, Harper and Rohsenow presented the results shown

in Fig. 4-6. It can be seen that W reaches a maximum value after which

it decreases on account of the rising pressure loss.
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Chapter 5: A DEIGN PRCEDURE I
5-1 Preliminary Remarks

As mentioned in the introductory chapter, this manual deals minly

with the thermal design. However, many features of the mechanical design

dictate the thermal performance; and limitations of weight, space, and

location, in contributing to the over-all problem, imy very well deter-

mine whether the heat exchanger is a practicable matter in a given appli-

cation.

The designer must use his science and art to build a regenerator that

lies within the allowable mechanical limitations and that provides a

satisfactory over-all performance of the power plant. He faces this task

with a system or group of quantities whose values are given. Sore of

these values have had to be determined from the performance requirements,

some by auxiliary calculations, and others by judgment, which improves

with experience. Generally, his design procedure depends upon the par-

ticular group of values he has to start with.

In the following sections a rather special problem is treated. A

statement of the problem appears in the next section. Then the analysis

is briefly discussed. This is followed by a solution with some sample

calculations. The solution illustrates the application of much of the

material in Chapters 2 and 3. The results are not intended, hovmver, to

be definitive without further development and experimentation, particularly

with regard to the pressure drop and heat transfer characteristics of the

type of matrix selected. It is hoped that the procedure presented here

may suggest how other groups of starting quantities may be handled and,

consequently, how other design procedures may be devised.

5-2 Statement of the Problem

We suppose that the designer has been given the quantities in Table 5-1.

As can be seen, his regenerator is to achieve an effectiveness of 90 per

cent. We suppose that a drum type regenerator is to be designed. For any

atrix construction that he selects the designer must calculate the quanti-

ties listed belowt
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L the mtrix lengths that is, the thickness of the drum; ft

Dd the mean or pitch diamter of the drum; ft

I the axial length of the drum; ft

2 n Ka the angle subtended by the air side

2 ,r K the angle subtended by the gas side

N the speed of rotation; revolutions per second

Table 5-1. Given Design and Performance Conditions
for the fliustrative Problem

Symbol* Quantity Value Units

P power at the shaft 2500 hp

"c compressor efficiency 0.85 -

combustion efficiency 0.95 -

t turbine efficiency 0.85 -

tIReg required regenerator effectiveness 0.90 -

T temperature at compressor intake 520 eR

T2  temperature at regenerator inlet (air side) 815 *R

T3  temperature at throttle 1810 R

T 4  temperature at regenerator inlet (gas side) 1376 *R

p 2  pressure at regenerator inlet (air side) 58.8 lb/sq in.

pressure at regenerator inlet (gas side) 15.45 Ilb/sq in.
APa allowable pressure drop on air side. 0.88 b/sq in.

Apg allowable pressure drop on gas side 0.75 lb/sq in.

ma rate of flow on air side 140,000 lb/hr

m rate of flow on gas side 141,OOO lb/hr

g

Subscripts 1, ... , 4 refer to the statepoints in the cycle diagram
of Fig. 4-I. All temperatures and pressures 4re absolute.
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5-3 Analysis of the Solution

After a matrix is selected the basic geometric and thermal properties

can be evaluated in accordance with Sections 3-1 to -5. General relation-

ships regarding pressure drop and heat transfer data can be selected from

Sections 3-6 and -7.

The pressure drop depends upon the mtrix length L and the mass

velocities I  G and G . This gives two relations, one between L anda g

Ga and the other between L and Gg.

The heat transfer coefficients ha and h depend, respectively,

upon Ga and Gg. Therefore, the reduced lengths Aa and Ag can

be expressed in terms of Ga, Gg, and L. Erploying the first two re-

lations, we may eliinate Ga and G to express A a  and Ag in

terms of L. Consequently, the harmonic mean reduced length Am can be

expressed in terms of L.

The allowable carry-over losses Lm. from the cold-air side depends

upon the speed of rotation and the volume of the matrix. It will be seen

that a known value of Ama/ma provides a relation among the quantities

N, Ga, and L. Also, the utilization factor depends upon N, Ga and L.

Observing that the fractions K and K are sinply related to G anda g a
Gg, we can calculate a unique value of the utilization factor U. Hence,

Am can be found from Fig. 2-8, and all required quantities can be cal-

culated.

5-4 Selection of the Matrix

The matrix of our regenerator is to be made of wire screen. It has

been suggested that the material forming the matrix is limited by burnout

due to fuel left in the exhaust gases and that the lower limit in the size

of wires (or plates) may be in the order of 0.008 inch.
2

It has been found convenient to lt rm"Q= lb/hr ft2 and [G1

lb/sec ft2; hence, G= 3600 ". The brackets ]...] here, as elsewere,
are to be read, "the units of ... are".

2See the reference to the iork of Bowden and Hryniszak at the end of

the Bibliography.
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Johnson (Ref. 15) found that copper gauze, glass wool, and steel wool

are unsuitable for high temperatures. Thin strips of a 70:30 copper-nickel

alloy and wire gauzes of brass, of mild steel, and of stainless steel

shoed no deterioration or corrosion after tests at about 900*F.

For purposes of the illustrative calculations, the gauze is assumed

to be made of stainless-steel wire 0.009 in. in diameter. It is supposed

that the screens are of 20 mesh and are firmly packed. The basic geometric

and thermal properties have been calculated by means of the relationships

in Chapter 3. The results are presented in Table 5-2.

Table 5-2. Basic Geometric and Thermal Properties
of the Assumed Matrix Material

Symbol Quantity Value Units

0.009 in.
D wire diameter 0.009 in

0.00075 ft

n mesh 20 in.

pvoid fraction 0.86

I - ( solid fraction 0.14

S" heat transfer area per unit volume 755 ft -

a_ ratio of free-flow area to facial area 0.67

density of the solid 487 lb/ft 3

c specific heat of the solid 0.138 B/lb F

CM  heat capacity of the matrix per unit volume 94 B/ft 3 F

De equivalent diameter 0.00355 ft

5-5 Calculation of the Mean Inlet and Outlet Temperatures on the Cold

and Hot Sides of the Regenerator

By definition of the regenerator. effectiveness, the mean outlet tem-

perature on the cold side of the regenerator is

TA= T2 + rReg(T4- T2 )= 1320*R
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Siilarly, the mean outlet temperature on the hot side is, practically,

.1
TB - Th - tReg(T4- T2) = 8 71R

Table 5-3 is a resume of the fluid temperatures at the regenerator
inlets and outlets. Symbols employed in the thermodynamic cycle of Fig. 4-1

are related to the corresponding symbols employed in Chapter 2. Thus,

T2 = 815*R while @a,l = T2 - 460 = 355*F, and so forth.

Table 5-3. Resume of Tenperatures at the Regenerator Inlets and Outlets

Cold Air Hot Gas

in out in out

T2 = 815*R TA = 1320*R T4 = 1376*R TB = 871"R

Qa.l = 355*F @a$2 = 860"F g = 916"F 0g,2 = 411F

5-6 Evaluation of the Mean Temperature of Each Fluid

In accordance with a recommendation of Cox and Lamb (Ref. 4), the

fluid properties with the exception of the specific weight, are evaluated

at a temperature which is 0.6 of the way between the average wall tem-

perature and the bulk mean fluid temperature. This rule is used here even

though Cox and Lamb worked only on flame trap matrices and Johnson corre-

lated his data with a somewhat different definition of the mean temperature.

The bulk meaA air temperature is a (a01 + 0 a) / 2 = 6O8*F;

a,b a.. a2
the bulk gas temperature is @g,b -= ( l 0 +g,2) / 2 = 664'F.

The average wall temperature ts$ is assumed tobe midway between

@alb and 0 g,b* Accordingly, in the illustrative example, tsV = 636"F.

Therefore, the temperature to be used for evaluating the fluid proper-

ties (,L, k, and c p) on the air side is

@a,m ts,m - 0.6 (tsm - ab = 6257F

WADC TR 55-13 85



iI

while on the gas side it is

0g,m ts,m + 0. 6 (Qgb - ts,m) - 647"F

The specific weights are evaluated at the bulk man stream tenpera-

tures under the assunptions that both the cold and the hot fluids are

air and that air is a thermally perfect gas (gas constant R = 53.3 ft/F).

The mean pressures on the air and gas sides are 8410 and 2170 lb/ft2 ,

respectively. Table 5-4 is a resume of the fluid property values that are

employed in the calculations which follow.

Table 5-4. Values of the Fluid Properties in the Illustrative &xample

Fluid
Quantity
Symbol Cold Air Hot Gas Units

0.168 0.0362 lb/ft3

c 0.251 0.252 B/lb F
p

106 • 20.4 20.6 lb/sec ft

k 0.0270 0.0274 B/hr ft F

5-7 Relationships Derived from the Correlation of Pressure Drop Data

From Section 3-6.2, the pressure drop of the matrix is, in a first

approximation,

L G
AP = f " Be 2 -T 2g(5-1)

e o: 2g

where, in the sane approximation,

25 (5-2)

Eliminating f and introducing the numerical values of g, a, and Dep
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o.5 o.

Ap = 3200 L G. 5 (5-3)

where [ap] - lb/ft2, [ = lb/sec ft, [ l = b/ft3, [L3 = ft, and

EG] = lb/sec ft2. With reference to Table 5-1, the allowable pressure
drops on the air and gas sides are 127 and 108 lb/ft2, respectively.

Therefore, Eq. 5-3 yields the system of equations,

Ga = 1.475 L-2/3 (5-4)

G- o.I=,8 L-2/3 (5-5)

5-8 Calculation of the Angle Subtended by the Ducts
Since the leakage fraction and the ratio of fuel to air are small,

it is assumed that Ua = U = U, in accordance with Eq. 2-25. By defi-

nition,

KGc
U .- - (5-6)Cm CLN

Since c Cp , it follows that

p'la p, g

KaGa KgGg (5-7)

Further,

Ka +K 1- ss (5-8)

where Ksl s is the fraction of the circle allowed for seals, duct walls,

etc, Assuming that Ksl s = 0.06 (corresponding to an angle of about 226)
and eliminating Ga, Gg, and L from Eq. 5-4, -5, and -7, we obtain the

set of simultaneous equations

Ka + Kg = o.94 (5-9)

Ka -0.285 Kg = 0 (5-10)
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The solution is Ka = 0.21 and Kg 0.73, corresponding to angles of

about 75* and 263, respectively. Adjustments may have to be made at

a later stage of the design.

5-9 Relations Derived from the Correlation of Heat Transfer Data

From Section 3-7.2, the correlation of the heat transfer data for the

selected matrix is

m •- h 1.00 (5-11)
3600 G c

Substituting the numerical values given in the preceding sections for a:,

D, 1 ", and C .we obtain the system of equations,

ha = 83.5 Ga  (5-12)

h = 84.3 G (5-13)
g g

where [h] = B/hr ft F and [G] = lb/sec ft 2 . Eliminating Ga and G

with the expressions of Eq. 5-4 and -5,

a -1/3 (-b
h = 101 L (5-14)

h = 54.6 L (5-15)
g

By definition, the reduced length is

h St"L
A S, (5-16)

3600 G C

Since h and G are known in terms of L, the reduced lengths may also

be expressed in terms of L. Thus, enploying Eq. 5-4, -5, -7, -8, and -11,

A a = 57.4 L4/ 3  (5-17)

A g = 108 L4/3 (5-18)
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where [L = ft. Further, the harmonic mean reduced length (cf. Section
2-9.1) is

A = 75.3 (5-19)

The regenerator could now be uniquely determined if another relation

betvween Am and L were available. In the next section an indirect

relationship is obtained: the utilization factor U is evaluated in

terms of the allowable carry-over loss. Its value is all that is needed,

because Am' U. and Reg are related by the theory of the balanced re-

generator.

5-10 Determination of the Utilization Factor in Terms of the Carry-Over

During each revolution of the matrix, cold air is carried over to

the gas side and hot gas to the air side. For purposes of illustration

it will be assumed that only the carry-over of the cold air need be con-

sidered, because its density is much greater than that of the hot gas.

A3.so, it will be assumed that the leakage at the seals is so small that

only the carry-over is significant; in practice this may not be the case

and an estimate of the leakage at the seals muld have to be made during

some stage of the design or develcpment. 1

The rate of loss of cold air to the hot side by virtue of the carry-

over equals the speed of rotation times the weight of the air contained

in the total volume of the void space in the matrix. Thus,

A% = 3600 N . Vto t •(3 (5-20)

where Vtot is the total volume of the mtrix. In term of A to a

good approximtion,

K
V = AL = A (l + ) (5-21)Vtota

a

1 1 An analysis of the seals my be f6und in the work of Boden and

Hryniszak. See the Additional References at the end of the Bibliography.
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This allows for partitioning the atrix. Substituting this expression

for V into Eq. 5-20, observing that ma = 3600 G A, and rearranging

the resultant equation,

KG (T a +(1
a a (5-22)

LN 6M

The influence of Ama/ma on the power plant efficiency could be checked

by enploying the aterial in Chapter 4. This is not done here, and for

the sake of brevity in the illustrative exanple it is assumed that a satis-

factory value of Ama/ma has been found to be 1 per cent. From Fig. 4-2

it can be seen that if the leakage through the seals is also quite small,

no correction is necessary for the regenerator effectiveness.

It follows that

Ga = 64.5 (5-23)

where [Ga] = lb/sec ft2 , [ = ft, and [N] = sec- I . The right-hand

nember of Eq. 5-6 is now evaluated ith the result that U = 0.036.

5-11 Results of the Sanple Calculations

Entering the theoretical curves of Fig. 2-8 for the balanced regenera-

tor with reg = 0.90 and U = 0.036, we fihd4 A = 18. (It may be ob-

served that this is exactly the value that would have been obtained by

erploying Eq. 2-72, the reason being that the utilization factor in this

illustrative exarple is very small.) Consequently, from Eq. 5-19,

L = 0.342 ft or about 4.1 inches. Having found the value of L, we

may readily obtain all other quantities of interest. The values of many

of them are listed in Table 5-5.
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Table 5-5, Results of the Calculations

Symbol Air Side Gas Side Units

U 0.036 0.036 -

L 0.342 0.342 ft

G 3.02 0.855 lb/sec ft2

h 145 78 B/hr ft 2 F
N - 780 222

Nst =h. /(G c) 0.0356 0.0658

f o.86 1.61

A 13.7 25.8

0.494 0.929

K 0.21 0.73

N 0.137 0.137 rps

N 8.22 8.22 rpm

From the relationship between the rate of flow m and the mass

velocity G, it is found that A and A are 12.9 and 45.8 ft2, re-
a g

spectively. The area alloved for the seals being about 6 per cent of the

total area, the pitch surface of the drum has a total area of 62.5 ft 2

and the volume of the drum is 21.4 ft3 . Assuming that the length 4

of the drum is 1.5 tines its pitch diameter Dd, one finds that

Dd = 3.65 ft and j = 5.46 ft. The matrix screens would weigh about

one ton.

5-12 Final Remarks

It has been noted that an assumption underlying the calculation pro-

cedure is that the pressure drop and the heat transfer correlations of

the selected uatrix material can be extended beyond the range of Johnson's

tests. This would require an experimental check. In particular, the

assumed friction factor on the cold side appears to be considerably lower
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than a true extrapolation of the data indicates. The sample calculation

could be improved by taking this difference into account.

The value 0.036 for the utilization factor is rather low. This

indicates that the carry-over losses could be reduced by lowering the

mtrix speed without seriously impairing the effectiveness of the cal-

culated mtrix or without having to increase the matrix length consider-

ably to retain the same effectiveness. In general, it is expected that a

regenerator could be found to operate satisfactorily with a utilization

factor in the order of magnitude 0.3.

The influence of conduction along the x-direction of the matrix can

be calculated by means of the chart in Fig. 2-9. In the illustrative

example, the conductivity of the stainless steel is k = 15 B/hr ft F,

and so (A/4)max ) 0.008. Therefore, the influence of the conduction

in the x-direction is to decrease the effectiveness less than 1 per cent.

The designer my have to try a few matrix materials before he is

satisfied that he has the regenerator of least weight and volume for

his application. Having found a matrix to satisfy the thermal require-

ments, the designer may proceed to the details of the mechanical design.

Finally, he can return to his calculations of the thermal performance,

improving his estimates and predicting the performances at other speeds

and other loads.
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Appendix A z INFLUENCE OF CJRVATURE IN DRUM TYPE MATRICES

A-i General Remarks

In this appendix it is shown that the performance of the drum type

regenerator can be obtained directly from the theory of the flat regenera-

tor (cf. Chapter 2). The demonstration is based on the assumptions of

Section 2-1 and is carried out using the line of reasoning in Section 2-2.

A-2 Derivation of the Differential Equations

A drum type matrix of unit length along the axis is considered. The

angular speed is w . Heat balances are made on an element of space shown

in Fig. A-1. Since the mass velocity m" varies with the radius, it

w ill be convenient to employ the axial interstitial velocity u, because

u • r is a constant by continuity. Also, the matrix velocity v is a

function of the radial distance, namely, v = * r.

It is sufficient to consider only one of the fluids;. and it my be

supposed that its channel subtends an angle K • 2q radians. The solid

teLperature is t = t(r,0) and the fluid teuperature Q = Q(r,o).

A-2.1 Thermal Energy Conveyed by the Fluid

The energy transported per unit tie by the fluid into the ele-

me-nt of space is

% = u (r 0 l) Pcp •9 (A-l)

A-2.2 Thermrl Energy Conveyed by the Solid

Sinilarly, the thermal energy transported per unit time into the

element of space by the solid material by virtue of its enthalpy is

w r  (8r - 1) Cm t (A-2)
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FIG. A-1 NOMENCLATURE FOR THE

I DRUM TYPE REGENERATOR
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A42.3 Thermal Energy in the Carry-Over

The thermal energy of the fluid carried over per unit time is

( =, w r 6 r 1) *c~ P G (A-3)

A-2.4 Balance of the Transported Thermal Energy

Applying the First Law of Thermodynamics to the elemental. volume

of space and observing that no heat is stored,

6r+ q, =~ 5 0 (A-4)

Substituting from Eq. A-i, -2, and -3 into Eq. A-b and observing that(3

cj ~, and u , r are constants,

uep a~8 t 69.-s
uep CPT+ C111 W i+ p WC. c(-5

A-2.5 Heat Exchange in the Elemental Volume of Space

The rate of change of the enthal~py of the matrix material is

equal to the rate of heat transferred by convection in the same 'space

elemnt. Accordingly,

(C *u t - 5r) 50 hS'm (0- t) *r 6r 60 (A-6)

or

8t0 hS" ( t) (A--)

Elimidnating at/cV from Eq. A-5 and-7

u ppcp 0+ ? wc, ~ m ( 0)(A-8)

It is convenient to enploy the rate of fluid flow per unit axial length,,

=t u *(K S2r * r 3 (A-9)
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Then Eq. A-8 my be written,

i + +r = 2iwK mC (t (A
'p

Equations A-7 and -10 are the basic differential equations governing the

tenperature of the solid and the fluid in the drum type natrix.

A-2.6 The Differential Equations in Dimensionless Space Coordinates

New coordinates are introduced:

r2 _ r
2

hS" l
= - • 2iK • (A-il)m'c 2p

and

r2 2
hSO 2, 2K.9 I

" 2 (A-12)

where subscript i refers to the inside radius of the drum. Then con-

sidering t = t( ., r) and 9 = Q( F , ), one can reduce Eq. A-7 and -10

to the simple forms obtained in discussing the flat matrix, narely

t (A-13)

and

M- t - (A-14)

A-3 Reduced Length and Reduced Period

The reduced length of the drum type matrix is

= r hS rO  r22 'c K h2S - (A-15)
rn Ic 2

p

where r0  is the outer radius of the drum. The reduced period is

hS" .2wK (A-16)
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The boundary conditions expressed in terms of A and 'K are the

same for the drum type regenerator as for the flat matrix. Thorefore,

the solutions of the problem of the flat regenerator becomes directly

applicable to the solution of the problem of the drum type regenerator.

A-4 Interpretation of the Modifications Caused by Curvature

If T denotes the tie that a point in the matrix takes to move an

angle 0 from the instant it enters the fluid, then -= t and, em-

ploying Eq. A-9, the definition of i becomes1 hS"'
___ F- 1 r - r.(A-17)

where u and u. are the radial velocities at r and r., respectively.
I1r ri

It can be shown that f(l- -) is the tie required for a particle inui
the fluid to move radially from ri to r. Thus it is shown that

defined by Eq. A-12 has the same form as the i for flat matrices de-

fined by Eq. 2-11.

Also, since 2TrK/w represents the time that any point in the ra-

trix is exposed to the fluid, the expression for IT in Eq. A-16 has

essentially the same meaning as the expression for VL in Eq. 2-19.

Regarding F , one may define a mean value of the mass velocity de-

noted by m" based on the arithmetic mean of the facial areas at
m,r

radii r. and r:1

r + r.i
m' =m" • 2 - K (A-18)

m,r 2

Then

h Sm  (r - ri) (A-19)

m~r p

Thus, it is shown that defined by Eq. A-11 has essentially the same

form as the for flat matrices defined by Eq. 2-10.
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In particular,

hS" (r0  i) (A-20)

where m" is the irean facial mass velocity based on the areas at ri and
m

r0 . It follows that to apply the theory of the flit matrix to a drum re-

generator, the reduced length must be evaluated on the basis of the mass

velocity at the mean radius of the drum.
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Appendix B: 'ORK AND THERMAL EFFICIENCY OF AN ACTUAL
REGE MRATIVE GAS TURBINE CYCLE

B-I General Remrks

Expressions for evaluating the work and thermal efficiency of an actual

regenerative gas turbine cycle are derived in this appendix. It is assumed

that the working medium is a thermally perfect gas having constant specific

heats. The expressions are developed for a pound of air entering the

syster at Poing 1 in Fig. 4-1. It is supposed that the compressor effici-

ency ' c' the turbine efficiency mt' the regenerator effectiveness
the pressure ratio rp = p the leakage fraction Am/m, and

the sumation of the pressure losses (as well as their distribution)

.(Ap/p) are known.

By definition,

S+ ()
P P2  Pl

Ratios a and a 2 are defined:

- P
pl =, .p (B-2)

and

P2 - P3 &p-B-3

P2 =2 p(-)

Hence,

+I + = 1 (B-4)

B-2 Evaluation of Tenperatures T2, T and TA

It has been nentioned in the text that Points 2' and 4' represent

the ideal end states of isentropic conpression and expansion, respectively.

Therefore,

T 21-T Tr 5)
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and

/ 
1 

(B-6)

Tenperatures T and T are related to T and T by the com-

pressor and turbine efficiencies:

T2 = T1  (B-7)(l Ic
and

Th=T 11+ it(.*'>~ (B-8)

Now, the regenerator's effectiveness by definition is, with reference
to Fig. 4-1,

TA -T 2

'lReg T14 -T B9
Consequently, the intermediate temperature TA, that is, the tenperature
of the cold air leaving the regenerator, may be expressed in term of
Ti  and. T3

1" -

+{ g t~ P (B-10)

Having found T2, T,9 and TA  in terms of the given quantities, one Ymy
now calculate the heat added Qa to the cycle and the net work W of the
crcle, as shown below.
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B-3 Evaluation of the Heat Added to the Cycle

The heat input Q. per pound of air entering the system at Point 1

is the heat required to raise the temperature of (1 - pound of the

air from Point A to Point 3. Hence, Ai

Qa = cp (1 - ' m) ( )(-1ma ~ l-~ (T3 -TA) (B-U)

B-4 Net Work of the Cycle

The net work of the cycle per pound of air at Point 1 is the dif-

ference between the work done by the turbine, namely,

W = (1 -- )(h 3 - h4 ) = (1 -M) cp(T 3 - T4  (B-12)

and the work done by the copressor, namely,

= h-2 hl = cp (T - T) (D-13)

Hence,

[ci I M)( 3 - 4  -( 2 - Ti)]

B-5 Maximum Thermal Efficiency ,

In general, the thermal efficiency of the cycle is

-= h (B-15)

From the preceding sections of this appendix it is evident that qth de-

pends upon T3,T 3  rc I 't Reg' clV 2 - (Ap/p), nVm, and r . Forp
any practical values of the first eight quantities, which mst be given

or calculated, there is a value of the pressure ratio r which givesp
the mraximum thermal efficiency lth,max (cf. Fig. 1-3). This value may

be found by the elementary processes of m=ximizing tth by means of the
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differential calculus *Or, it can be found more simply by plotting 't
as a function of r.I

I The miximm work of the cycle per pound of air may be found in similar
Tways *
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